On b-continuity of Kneser Graphs of Type KG(2k+1, k)

نویسنده

  • Saeed Shaebani
چکیده

We prove that for each natural number k, KG(2k+1, k) is b-continuous. Then, we introduce some special conditions for graphs to be b-continuous.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifts of the stable Kneser graphs and hom-idempotence

A graph G is said to be hom-idempotent if there is a homomorphism from G2 to G, and weakly hom-idempotent if for some n ≥ 1 there is a homomorphism from Gn+1 to Gn. Larose et al. (1998) proved that Kneser graphs KG(n, k) are not weakly hom-idempotent for n ≥ 2k + 1, k ≥ 2. For s ≥ 2, we characterize all the shifts (i.e., automorphisms of the graph that map every vertex to one of its neighbors) ...

متن کامل

Symmetries of the Stable Kneser Graphs

It is well known that the automorphism group of the Kneser graph KGn,k is the symmetric group on n letters. For n ≥ 2k + 1, k ≥ 2, we prove that the automorphism group of the stable Kneser graph SGn,k is the dihedral group of order 2n. Let [n] := [1, 2, 3, . . . , n]. For each n ≥ 2k, n, k ∈ {1, 2, 3, . . .}, the Kneser graph KGn,k has as vertices the k-subsets of [n] with edges defined by disj...

متن کامل

Sparse Kneser graphs are Hamiltonian

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) is the graph whose vertices are the k-element subsets of {1, . . . , n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k + 1, k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k ≥ 3, the odd graph K(2k + 1,...

متن کامل

Binomial and Q-Binomial Coefficient Inequalities Related to the Hamiltonicity of the Kneser Graphs and Their Q-Analogues

The Kneser graph K(n, k) has as vertices all the k-subsets of a fixed n-set and has as edges the pairs [A, B] of vertices such that A and B are disjoint. It is known that these graphs are Hamiltonian if ( n&1 k&1) ( n&k k ) for n 2k+1. We determine asymptotically for fixed k the minimum value n=e(k) for which this inequality holds. In addition we give an asymptotic formula for the solution of k...

متن کامل

A generalization of Kneser's conjecture

We investigate some coloring properties of Kneser graphs. A star-free coloring is a proper coloring c : V (G) → N such that no path with three vertices may be colored with just two consecutive numbers. The minimum positive integer t for which there exists a star-free coloring c : V (G) → {1, 2, . . . , t} is called the starfree chromatic number of G and denoted by χs(G). In view of Tucker-Ky Fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Ars Comb.

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2015